Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
J Agric Food Chem ; 72(11): 5595-5608, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446412

RESUMO

Metabolic resistance to the maize-selective, HPPD-inhibiting herbicide, mesotrione, occurs via Phase I ring hydroxylation in resistant waterhemp and Palmer amaranth; however, mesotrione detoxification pathways post-Phase I are unknown. This research aims to (1) evaluate Palmer amaranth populations for mesotrione resistance via survivorship, foliar injury, and aboveground biomass, (2) determine mesotrione metabolism rates in Palmer amaranth populations during a time course, and (3) identify mesotrione metabolites including and beyond Phase I oxidation. The Palmer amaranth populations, SYNR1 and SYNR2, exhibited higher survival rates (100%), aboveground biomass (c.a. 50%), and lower injury (25-30%) following mesotrione treatment than other populations studied. These two populations also metabolized mesotrione 2-fold faster than sensitive populations, PPI1 and PPI2, and rapidly formed 4-OH-mesotrione. Additionally, SYNR1 and SYNR2 formed 5-OH-mesotrione, which is not produced in high abundance in waterhemp or naturally tolerant maize. Metabolite features derived from 4/5-OH-mesotrione and potential Phase II mesotrione-conjugates were detected and characterized by liquid chromatography-mass spectrometry (LCMS).


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Amaranthus , Cicloexanonas , Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Amaranthus/metabolismo , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Resistência a Herbicidas , Corante Amaranto/metabolismo
2.
J Agric Food Chem ; 72(10): 5122-5132, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38382533

RESUMO

Palmer amaranth has evolved target and nontarget site resistance to protoporphyrinogen oxidase-inhibitor herbicides in the United States. Recently, a population (KCTR) from a long-term conservation tillage study in Kansas was found to be resistant to herbicides from six sites of action, including to PPO-inhibitors, even with this herbicide group being minimally used in this field. This research investigated the level of resistance to postemergence PPO-inhibitors, target- and nontarget-site resistance mechanism(s), and efficacy of pre-emergence chemistries. The greenhouse experiments confirmed 6.1- to 78.9-fold resistance to lactofen in KCTR, with the level of resistance increasing when KCTR was purified for the resistance trait. PPO2 sequences alignment revealed the absence of known mutations conferring resistance to PPO-inhibitors in KCTR Palmer amaranth, and differential expression of the PPO2 gene did not occur. KCTR metabolized fomesafen faster than the susceptible population, indicating that herbicide detoxification is the mechanism conferring resistance in this population. Further, treatment with the cytochrome P450-inhibitor malathion followed by lactofen restored the sensitivity of KCTR to this herbicide. Despite being resistant to POST applied PPO-inhibitors, KCTR Palmer amaranth was completely controlled by the labeled rate of the PRE applied PPO-inhibitors fomesafen, flumioxazin, saflufenacil, sulfentrazone, and oxadiazon. The overall results suggest that P450-mediated metabolism confers resistance to PPO-inhibitors in KCTR, rather than alterations in the PPO2, which were more commonly found in other Palmer amaranth populations. Future work will focus on identifying the fomesafen metabolites and on unravelling the genetic basis of metabolic resistance to PPO-inhibitor herbicides in KCTR Palmer amaranth.


Assuntos
Amaranthus , Benzamidas , Éteres Difenil Halogenados , Herbicidas , Herbicidas/farmacologia , Kansas , Protoporfirinogênio Oxidase/genética , Resistência a Herbicidas/genética , Amaranthus/metabolismo
3.
Environ Pollut ; 345: 123505, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325515

RESUMO

After cadmium (Cd) immobilization remediation in contaminated farmland soil, which forms of nitrogen fertilizer should be implemented to keep its sustainability? Urea and nitrate were used to compare for their effects on the remobilization of stabilized Cd in the rhizosphere soil of edible amaranth at nitrogen concentrations of 60, 95, and 130 mg kg-1. The results showed that compared to nitrate nitrogen, the Cd content in shoots increased by 76.2%, 65.6%, and 148% after applying three different concentrations of urea, and the total remobilization amount of Cd also increased by 16.0%, 24.9%, and 14.0% respectively. Urea application promotes root secretion of citric acid, malic acid, pyruvate, and γ-aminobutyric acid, crucial in remobilizing stable Cd. The application of urea promoted the expression of genes involved in sucrose transport, glycolysis, the TCA cycle, amino acid secretion, citric acid efflux, and proton efflux. Arabidopsis heterologous expression and yeast one-hybrid assays identify critical roles of AmMATE42 and AmMATE43 in citric acid and fumaric acid efflux, with AmSTOP1 activating their transcription. Inhibition of SIZ1 expression in urea treatment reduce AmSTOP1 SUMOylation, leading to increased expression of AmMATE42 and AmMATE43 and enhanced organic acids efflux. Using edible amaranth as a model vegetable, we discovered that urea is not beneficial to preserving the sustainability of stabilized Cd during the reuse of remediated farmlands contaminated with Cd.


Assuntos
Amaranthus , Poluentes do Solo , Ácidos Sulfônicos , Cádmio/análise , Solo/química , Nitratos/metabolismo , Ureia/farmacologia , Ureia/metabolismo , Compostos Orgânicos/metabolismo , Amaranthus/metabolismo , Nitrogênio/farmacologia , Nitrogênio/metabolismo , Ácido Cítrico , Poluentes do Solo/análise
4.
Physiol Plant ; 175(5): e13993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882288

RESUMO

The herbicides glyphosate and pyrithiobac inhibit the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the aromatic amino acid biosynthetic pathway and acetolactate synthase (ALS) in the branched-chain amino acid biosynthetic pathway, respectively. Here we characterise the protease activity profiles of a sensitive (S), a glyphosate-resistant (GR) and a multiple-resistant (MR) population of Amaranthus palmeri in response to glyphosate and pyrithiobac. Amino acid accumulation and cysteine protease activities were induced with both herbicides in the S population and with pyrithiobac in the GR population, suggesting that the increase in cysteine proteases is responsible for the increased degradation of the available proteins and the observed increase in free amino acids. Herbicides did not induce any changes in the proteolytic activities in the populations with target-site resistance, indicating that this effect was only induced in sensitive plants.


Assuntos
Amaranthus , Cisteína Proteases , Herbicidas , Resistência a Herbicidas , Amaranthus/metabolismo , Herbicidas/farmacologia , Herbicidas/metabolismo , Cisteína Proteases/metabolismo , Cisteína Proteases/farmacologia
5.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570597

RESUMO

Amaranth plants contain abundant betalains and flavonoids. Anthocyanins are important flavonoids; however, they cannot coexist in the same plant with betalains. Blue light influences metabolite synthesis and hypocotyl elongation; accordingly, analyses of its effects on betalain and flavonoid biosynthesis in Amaranthus tricolor may provide insight into the distribution of these plant pigments. We analyzed the betalain and flavonoid content and transcriptome profiles in amaranth hypocotyls under blue light and dark conditions. Furthermore, we analyzed the expression patterns of key genes related to betalains and flavonoids. Amaranth hypocotyls were shorter and redder and showed higher betalain and flavonoid content under blue light than in dark conditions. Key genes involved in the synthesis of betalains and flavonoids were upregulated under blue light. The gene encoding DELLA was also upregulated. These results suggest that blue light favors the synthesis of both betalains and flavonoids via the suppression of bioactive gibberellin and the promotion of DELLA protein accumulation, which also suppresses hypocotyl elongation. The metabolite profiles differed between plants under blue light and dark conditions. These findings improve our understanding of the environmental cues and molecular mechanisms underlying pigment variation in Amaranthus.


Assuntos
Amaranthus , Betalaínas , Flavonoides/metabolismo , Transcriptoma , Antocianinas/metabolismo , Amaranthus/genética , Amaranthus/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Plantas/metabolismo
6.
Food Chem ; 429: 136891, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481980

RESUMO

Amaranthus L. leaves are consumed as vegetables and are a rich source of secondary plant metabolites. The phenolic profiles of the three analyzed genotypes by LC-Q-TOF-MS/MS and HPLC-DAD were characterized by high amounts of hydroxycinnamic glucaric and -isocitric acids. 'Gartenfuchsschwanz' (A. hybridus L.) and 'Red Callaloo' (A. tricolor L.) had similar profiles. 'Gemüse-Amaranth' (A. tricolor L.) had a high amount of caffeoylglucaric acid 4, which was isolated, and afterward identified by NMR. Its antioxidant activity, measured by TEAC, DPPH, and TPC, was similar to 5-caffeoylquinic acid, common in many plant species. The antioxidant activity of Amaranthus L. can be explained rather by their different phenolic- and ascorbic acid concentrations than by their species. Household cooking reduces antioxidant activity due to oxidation processes while leaching into cooking water could be neglected. Amaranthus L. baked into a wheat-dough-matrix showed lower phenolic concentrations, presumably due to the formation of phenol-protein-bounds and thermal degradation.


Assuntos
Amaranthus , Antioxidantes , Antioxidantes/química , Amaranthus/metabolismo , Espectrometria de Massas em Tandem , Ácido Ascórbico/análise , Fenóis/análise , Genótipo , Folhas de Planta/química , Extratos Vegetais/química
7.
Environ Pollut ; 331(Pt 1): 121846, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37211225

RESUMO

Hyperaccumulator Amaranthus hypochondriacus L. has huge potential in the remediation of cadmium (Cd)-contaminated soils and is necessary to understand the mechanism of Cd uptake by the roots. In this study, the mechanism of Cd uptake into the root of A. hypochondriacus was investigated using the non-invasive micro-test technology (NMT) by analyzing the rate of Cd2+ fluxes at different regions of the root tip; also we assessed the impact of different channel blockers and inhibitors on the Cd accumulation in the roots, the real-time Cd2+ fluxes, and the distribution of Cd along the roots. The results showed that the Cd2+ influx was greater near the root tip (within 100 µm of the tip). All the inhibitors, ion-channel blockers, and metal cations had different degrees of inhibition on the absorption of Cd in the roots of A. hypochondriacus. The net Cd2+ flux in the roots was significantly decreased by the Ca2+ channel blockers lanthanum chloride (LaCl3) by up to 96% and verapamil by up to 93%; as for the K+ channel blocker tetraethylammonium (TEA), it also caused a 68%-reduction on the net Cd2+ flux in the roots. Therefore, we infer that the uptake by A. hypochondriacus roots is mainly through the Ca2+ channels. The Cd absorption mechanism appears to be related to the synthesis of plasma membrane P-type ATPase and phytochelatin (PC), which is reflected by the inhibition of Ca2+ upon addition of inorganic metal cations. In conclusion, access of Cd ions into the roots of A. hypochondriacus is achieved through various ion channels, with the most important being the Ca2+ channel. This study will further enhance the literature regarding Cd uptake and pathways of membrane transport in roots of Cd hyperaccumulators.


Assuntos
Amaranthus , Poluentes do Solo , Cádmio/análise , Amaranthus/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/análise , Metais/metabolismo , Biodegradação Ambiental
8.
Chemosphere ; 326: 138435, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36933838

RESUMO

Calcium oxalate (CaOx) crystals in plants act as a sink for excess Ca and play an essential role in detoxifying heavy metals (HMs). However, the mechanism and related influencing factors remain unclear. Amaranth (Amaranthus tricolor L.) is a common edible vegetable rich in CaOx and a potential Cd hyperaccumulation species. In this study, the hydroponic experiment was carried out to investigate the effect of exogenous Ca concentrations on Cd uptake by amaranth. The results showed that either insufficient or excess Ca supply inhibited amaranth growth, while the Cd bioconcentration factor (BCF) increased with Ca concentration. Meanwhile, the sequence extraction results demonstrated that Cd mainly accumulated as pectate and protein-bound species (NaCl extracted) in the root and stem, compared to pectate, protein, and phosphate-bound (acetic acid extractable) species in the leaf. Correlation analysis showed that the concentration of exogenous Ca was positively correlated with amaranth-produced CaOx crystals but negatively correlated with insoluble oxalate-bound Cd in the leaf. However, since the accumulated insoluble oxalate-bound Cd was relatively low, Cd detoxification via the CaOx pathway in amaranth is limited.


Assuntos
Amaranthus , Metais Pesados , Poluentes do Solo , Cádmio/análise , Cálcio/metabolismo , Amaranthus/metabolismo , Oxalato de Cálcio/metabolismo , Metais Pesados/metabolismo , Cálcio da Dieta/metabolismo , Poluentes do Solo/análise
9.
Sci Rep ; 13(1): 4289, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922550

RESUMO

Redroot Pigweed (Amaranthus retroflexus L.) is an important weed that is highly competitive with common bean. Photosynthetic pigments, the activity of antioxidant enzymes, the relative expression of a number of antioxidant enzyme and light response genes, were studied in three of common bean cultivars and in V4 and R7 stages under Redroot Pigweed free and infested. The presence of weeds reduced the content of chlorophyll, relative chlorophyll and anthocyanin of common bean leaves. With the increase of weed competition, the expression of antioxidant genes and enzymes increased, which indicates the increase of their activity in order to reduce the amount of reactive oxygen species. Among the studied antioxidant enzymes, the activity of catalase and ascorbate peroxidase produced in the leaves was higher than that of superoxide dismutase. With the increase of weed interference, the expression of phytochrome interacting factor 3 (PIF3) gene as a positive regulator of light signals is increased and the expression of phytochrome rapidly regulated1 (PAR1) gene as a negative regulator is decreased. Chlorophyll a/b-binding protein (CAB1) and auxin-responsive protein IAA8 (IAA8) genes also down-regulated with increasing competition. Along with the decrease of CAB expression in the conditions of competition with weeds, the chlorophyll a, b content also decreased. Correlation between gene expression and physiological traits related to them highlights the prominent role of CWCP in maintaining yield potential.


Assuntos
Amaranthus , Phaseolus , Fitocromo , Sanguinaria , Amaranthus/metabolismo , Antioxidantes/metabolismo , Phaseolus/metabolismo , Clorofila A/metabolismo , Clorofila/metabolismo , Fitocromo/metabolismo
10.
DNA Res ; 30(1)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473054

RESUMO

Amaranthus tricolor is a vegetable and ornamental amaranth, with high lysine, dietary fibre and squalene content. The red cultivar of A. tricolor possesses a high concentration of betalains, which has been used as natural food colorants. Here, we constructed the genome of A. tricolor, the first reference genome for the subgenus Albersia, combining PacBio HiFi, Nanopore ultra-long and Hi-C data. The contig N50 size was 906 kb, and 99.58% of contig sequence was anchored to the 17 chromosomes, totalling 520 Mb. We annotated 27,813 protein-coding genes with an average 1.3 kb coding sequence and 5.3 exons. We inferred that A. tricolor underwent a whole-genome duplication (WGD) and that the WGD shared by amaranths occurred in the last common ancestor of subfamily Amaranthoideae. Moreover, we comprehensively identified candidate genes in betalain biosynthesis pathway. Among them, DODAα1 and CYP76ADα1, located in one topologically associated domain (TAD) of an active (A) compartment on chromosome 16, were more highly expressed in red leaves than in green leaves, and DODAα1 might be the rate-limiting enzyme gene in betalains biosynthesis. This study presents new genome resources and enriches our understanding of amaranth evolution, betalains production, facilitating molecular breeding improvements and the understanding of C4 plants evolution.


Assuntos
Amaranthus , Betalaínas , Betalaínas/metabolismo , Amaranthus/genética , Amaranthus/metabolismo , Genoma de Planta , Genes de Plantas , Cromossomos
11.
J Agric Food Chem ; 70(49): 15380-15389, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36453610

RESUMO

A 2,4-dichlorophenoxyactic acid (2,4-D)-resistant population of Amaranthus tuberculatus (common waterhemp) from Nebraska, USA, was previously found to have rapid metabolic detoxification of the synthetic auxin herbicide 2,4-D. We purified the main 2,4-D metabolites from resistant and susceptible plants, solved their structures by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS), and synthesized the metabolites to determine their in planta toxicity. Susceptible plants conjugated 2,4-D to aspartate to form 2,4-D-aspartic acid (2,4-D-Asp), while resistant plants had a unique metabolic profile where 2,4-D was hydroxylated into 5-OH-2,4-D, followed by conjugation into a sugar metabolite (2,4-D-5-O-d-glucopyranoside) and subsequent malonylation into 2,4-D-(6'-O-malonyl)-5-O-d-glucopyranoside. Toxicological studies on waterhemp and Arabidopsis thaliana confirmed that the hydroxylated metabolite lost its auxinic action and toxicity. In contrast, the 2,4-D-Asp metabolite found in susceptible plants retained some auxinic action and toxicity. These results demonstrate that 2,4-D-resistant A. tuberculatus evolved novel detoxification reactions not present in susceptible plants to rapidly metabolize 2,4-D, potentially mediated by cytochrome P450 enzymes that perform the initial 5-hydroxylation reaction. This novel mechanism is more efficient to detoxify 2,4-D and produces metabolites with lower toxicity compared to the aspartic acid conjugation found in susceptible waterhemp.


Assuntos
Amaranthus , Herbicidas , Amaranthus/metabolismo , Resistência a Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacologia , Ácido 2,4-Diclorofenoxiacético/metabolismo
12.
Molecules ; 27(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364173

RESUMO

The inclination toward natural products has led to the onset of the discovery of new bioactive metabolites that could be targeted for specific therapeutic or agronomic applications. Despite increasing knowledge coming to light of allelochemicals as leads for new herbicides, relatively little is known about the mode of action of allelochemical-based herbicides on herbicide-resistant weeds. Cyanamide is an allelochemical produced by hairy vetch (Vicia villosa Roth.). This study aimed to detect the toxicity of cyanamide to alfalfa and amaranth. Seed germination experiments were carried out by the filter paper culture, and the seedling growth inhibition experiment was carried out by spraying alfalfa (Medicago sativa L.) and amaranth (Amaranthus retroflexus L.) seedlings with cyanamide. The results showed that when the concentration of cyanamide was 0.1 g·L-1, the germination of amaranth seeds could be completely inhibited without affecting the germination of alfalfa seeds. At the concentration of 0.5 g·L-1, cyanamide could significantly inhibit the growth of the root and stem of amaranth seedlings but did not affect the growth of alfalfa. This effect was associated with the induction of oxidative stress. The ascorbate peroxidase (APX) and catalase (CAT) activity of amaranth decreased by 6.828 U/g FW and 290.784 U/g FW, respectively. The malondialdehyde (MDA) content, peroxidase (POD), and superoxide dismutase (SOD) activity of amaranth firstly increased and then decreased with the increasing concentration of CA. These enzyme activities of amaranth changed more than that of alfalfa. Activities of the antioxidant enzymes APX, CAT, POD, and SOD and the content of MDA varied dramatically, thereby demonstrating the great influence of reactive oxygen species upon identified allelochemical exposure. In addition, cyanamide can also inhibit the production of chlorophyll, thereby affecting the growth of plants. From the above experiments, we know that cyanamide can inhibit the growth of amaranth in alfalfa fields. Thus, the changes caused by cyanamide described herein can contribute to a better understanding of the actions of allelochemical and the potential use of cyanamide in the production of bioherbicides.


Assuntos
Amaranthus , Herbicidas , Medicago sativa , Cianamida , Amaranthus/metabolismo , Plântula , Germinação , Ascorbato Peroxidases/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peroxidase/metabolismo , Peroxidases , Feromônios/farmacologia , Superóxido Dismutase/metabolismo , Herbicidas/toxicidade
13.
Planta ; 256(3): 57, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960361

RESUMO

MAIN CONCLUSION: Amplification and overexpression of the target site glutamine synthetase, specifically the plastid-located isoform, confers resistance to glufosinate in Amaranthus palmeri. This mechanism is novel among glufosinate-resistant weeds. Amaranthus palmeri has recently evolved resistance to glufosinate herbicide. Several A. palmeri populations from Missouri and Mississippi, U.S.A. had survivors when sprayed with glufosinate-ammonium (GFA, 657 g ha-1). One population, MO#2 (fourfold resistant) and its progeny (sixfold resistant), were used to study the resistance mechanism, focusing on the herbicide target glutamine synthetase (GS). We identified four GS genes in A. palmeri; three were transcribed: one coding for the plastidic protein (GS2) and two coding for cytoplasmic isoforms (GS1.1 and GS1.2). These isoforms did not contain mutations associated with resistance. The 17 glufosinate survivors studied showed up to 21-fold increase in GS2 copies. GS2 was expressed up to 190-fold among glufosinate survivors. GS1.1 was overexpressed > twofold in only 3 of 17, and GS1.2 in 2 of 17 survivors. GS inhibition by GFA causes ammonia accumulation in susceptible plants. Ammonia level was analyzed in 12 F1 plants. GS2 expression was negatively correlated with ammonia level (r = - 0.712); therefore, plants with higher GS2 expression are less sensitive to GFA. The operating efficiency of photosystem II (ϕPSII) of Nicotiana benthamiana overexpressing GS2 was four times less inhibited by GFA compared to control plants. Therefore, increased copy and overexpression of GS2 confer resistance to GFA in A. palmeri (or other plants). We present novel understanding of the role of GS2 in resistance evolution to glufosinate.


Assuntos
Amaranthus , Herbicidas , Amaranthus/genética , Amaranthus/metabolismo , Aminobutiratos , Amônia/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Resistência a Herbicidas/genética , Herbicidas/metabolismo , Herbicidas/farmacologia
14.
Vopr Pitan ; 91(3): 96-106, 2022.
Artigo em Russo | MEDLINE | ID: mdl-35852982

RESUMO

Amaranth is a widespread genus of predominantly annual herbaceous plants belonging to the Amaranthaceae family, which is one of the most widely used pseudocereals along with quinoa and buckwheat in nutrition. The aim of the research was to review and analyze the results of the studies on the characteristics of amaranth grain proteins, the effect of various food processing methods on their quality, and the prospects for using amaranth protein hydrolysates in therapeutic nutrition. Material and methods. For the main search for the literature, the PubMed bibliographic database was used, which covers about 75% of the world's medical publications. In addition, Scopus and Web of Science databases and non-commercial search engine Google Scholar were used. The depth of the search was 15 years. Results. The paper presents a brief review of modern approaches for obtaining amaranth protein isolates and concentrates, including the use of a complex of physicochemical methods: grinding, sifting, extraction at high pH values, defatting, ultrafiltration, centrifugation, isoelectric precipitation, and drying of the protein product. A comparative characteristic of amino acid content of protein fractions of pseudocereals is presented. Basically, leucine, isoleucine, and valine are limiting amino acids for the grain protein of various varieties of amaranth. When substantiating and developing modern effective food technologies for processing amaranth grain, the studies dedicated to the evaluation of their impact on the biological value of amaranth protein deserve special attention. Methods of grain fermentation, sprouting, steaming, malting, boiling can be used to increase the bioavailability and digestibility of its ingredients. The results of in vitro and in vivo studies indicate the presence of hypotensive, hypolipidemic and antioxidant activity of the amaranth protein and its hydrolysates what determines the prospects for their use as part of foods for special dietary uses and therapeutic nutrition. An analysis of the scientific publications presented in the review indicates an increase in demand for high-quality gluten-free products and an increase in the range of mass-consumption foods, such as bakery, pasta, flour confectionery, with pseudo-cereals in their composition, including amaranth. Conclusion. The high biological value and technological properties of amaranth protein concentrates/isolates determine the prospects for their use to create a wide range of specialized foods for various purposes.


Assuntos
Amaranthus , Chenopodium quinoa , Proteínas de Grãos , Amaranthus/química , Amaranthus/metabolismo , Aminoácidos/análise , Chenopodium quinoa/química , Chenopodium quinoa/metabolismo , Dieta Livre de Glúten , Grão Comestível/química , Glutens , Proteínas de Grãos/análise
15.
PLoS One ; 17(7): e0270849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35793322

RESUMO

Water and nitrogen availability are two major environmental factors that can impair plant growth, and when combined, their effects on plant performance can be either intensified or reduced. The objective of this study was to analyze the influence of nitrogen availability on the responses of Amaranthus cruentus's metabolism to water stress. The plants were cultivated in plastic pots filled with vermiculite, kept under greenhouse conditions, and were watered three times a week with 70% of a full strength nitrogen-free Long Ashton solution, containing 1.97 or 9.88 kg N ha-1 as ammonium nitrate. Photosynthetic parameters were evaluated in planta, and leaves were harvested for chemical analysis of photosynthetic pigments, proline, and phenolic contents. Higher nitrogen supply increased the shoot dry matter, photosynthetic pigments, photosynthesis, stomatal conductance, transpiration, total leaf nitrogen, proline, nitrate, and ammonium but reduced the concentration of flavonoids and total phenols. Six days of water stress did not affect dry matter, photosynthetic pigments, leaf nitrogen, ammonium, or specialized metabolites but increased the proline under high nitrogen and negatively affected stomatal conductance, transpiration, photosynthesis, relative water content, instantaneous water use efficiency, and leaf nitrate. The negative effect was more pronounced under high nitrogen supply. The results show that the addition of a high amount of nitrogen made the physiological processes of plants more sensitive to water stress, indicating that the plant response to water restriction depends on the interaction between the different environmental stressors to which the plants are subjected.


Assuntos
Amaranthus , Compostos de Amônio , Amaranthus/metabolismo , Desidratação , Secas , Nitratos , Nitrogênio , Prolina/metabolismo , Estresse Fisiológico
16.
Sci Total Environ ; 833: 155258, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35429559

RESUMO

Nano-enabled foliar-application could be an ideal strategy for advancing agricultural productivity. However, it remains largely unknown whether they inhibit or promote the uptake of pollutants. Here, we systematically examined how foliar applying SiO2 nanoparticles (nSiO2) and ZnO nanoparticles (nZnO) (20 nm, 100 mg·L-1), influence polycyclic aromatic hydrocarbons (PAHs) uptake in 4-week-old amaranth (Amaranthus tricolor L.). Results showed that foliar application of nSiO2 or nZnO enhanced amaranth biomass by 20.2-26.4% but decreased PAHs bioaccumulation in leaves by 20.4-54.9% after 7-d incubation. Changes regarding amino acid-related pathways (alanine/aspartate/glutamate metabolism and arginine biosynthesis) and energy maintenance pathways (TCA cycle) were observed in amaranth leaves after foliar application of nSiO2 and nZnO. Specific PLS-DA analyses with total PAHs uptake as the biological endpoint showed that the contents of PAHs positively correlated with valine (R2 = 0.799) and tyrosine (R2 = 0.789), but negatively correlated with D-tagatose (R2 = 0.805) and L-gulonolactone (R2 = 0.877), indicating greater oxidant stress under higher PAHs level. We propose that mechanisms of declined uptake of PAHs involve the biomass-dependent dilute effect and activation of biological response against PAHs accumulation. These findings provide a prospective vision on how nano-enabled foliar-application alleviates PAH-enriched environmental burden while producing higher-yield agricultural products, especially for low toxic and biocompatible nSiO2.


Assuntos
Amaranthus , Nanopartículas , Hidrocarbonetos Policíclicos Aromáticos , Óxido de Zinco , Amaranthus/metabolismo , Metabolômica , Hidrocarbonetos Policíclicos Aromáticos/análise , Dióxido de Silício
17.
Environ Sci Pollut Res Int ; 29(32): 49092-49104, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35217955

RESUMO

Edible amaranth (Amaranthus tricolor L.) is used as a food-medicine or ornamental plant, and despite its importance, there are few reports associated with cadmium (Cd) stress. This study aimed to appraise the crosstalk between sodium nitroprusside (SNP), as a source of nitric oxide (NO), and cadmium toxicity on growth and physiological traits in edible amaranth by using different multivariate statistical methods. The results showed that growth-related traits of A. tricolor were significantly reduced under Cd stress. Contrarily, Cd treatments increased lipid peroxidation and reduced total protein content. Delving on the results of SNP application showed the suitability of its medium level (100 µM) on increasing the growth-related traits and also plant tolerance to Cd stress via lowering the lipid peroxidation and radical molecules production due to the higher activities of superoxide dismutase and catalase. Increasing the amount of Cd in roots and shoots, as the result of Cd treatment, reduced the growth and production of A. tricolor plants by high rates (over 50% in 60 mg kg-1 Cd level), indicating its susceptibility to high Cd toxicity. Contrarily, treating plants with SNP showed no effect on shoot Cd content, while it significantly increased Cd allocation in the root, which might be attributable to the protective effect of NO on Cd toxicity by trapping Cd in the root. Subsequently, the application of a medium level of SNP (around 100 µM) is recommendable for A. tricolor plant to overcome the negative impacts of Cd toxicity. Moreover, according to the results of heatmap and biplot, under no application of Cd, the application of 100 µM SNP showed a great association with growth-related traits indicating the effectiveness of SNP on the productivity of this species even under no stress situations.


Assuntos
Amaranthus , Poluentes do Solo , Amaranthus/metabolismo , Antioxidantes/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Análise Multivariada , Óxido Nítrico/metabolismo , Nitroprussiato/metabolismo , Nitroprussiato/farmacologia , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
18.
Int J Phytoremediation ; 24(10): 1060-1070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34779332

RESUMO

Rutin is a flavonoid with strong antioxidative effects on plant metabolism that facilitates resistance to environmental stress. The effect of foliar rutin on cadmium (Cd) uptake in Amaranthus hypochondriacus (K472) was studied. The results showed that a foliar spray of rutin alleviated Cd toxicity, promoted plant growth, improved Cd transfer to and storage in aerial plant parts and Cd accumulation with positive effects over time. A rutin concentration of 1.5 mg/mL showed the strongest promotion effect: the biomass and Cd content were increased at 13 days by 68.62% and 405.54% compared to 3 days, respectively, whereas a high concentration of rutin (5 mg/mL) inhibited plant growth and hindered Cd absorption. Two stages of Cd detoxification were identified in K472 after appropriate rutin application. First, an antioxidant system including an enzymatic antioxidant (superoxide dismutase [SOD]) and nonenzymatic antioxidants (glutathione [GSH] and flavonoids) was activated to enhance plant stress resistance. Quercetin and phytochelatin (PC) synthesis were then enhanced to perform detoxification synergistically with the antioxidant system to improve stress tolerance and achieve stable Cd detoxification. The results demonstrated that appropriately prolonging the application time of exogenous rutin to K472 is an effective way to improve the Cd remediation efficiency.


The application of exogenous rutin to regulate the growth and Cd absorption of grain amaranth is reported for the first time. A foliar spray of rutin enriches Cd by regulating the metabolism of flavonoids and enhancing antioxidation and phytochelatin detoxification under Cd stress. Properly prolonging the harvest time after rutin treatment can greatly improve the Cd remediation efficiency of soil. The findings of the present study would be helpful for the remediation of Cd-contaminated soils.


Assuntos
Amaranthus , Poluentes do Solo , Amaranthus/metabolismo , Antioxidantes/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Fitoquelatinas/metabolismo , Rutina/metabolismo , Rutina/farmacologia , Poluentes do Solo/metabolismo
19.
Plant Cell Physiol ; 62(11): 1770-1785, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453831

RESUMO

Herbicide resistance in weeds can be conferred by target-site and/or non-target-site mechanisms, such as rapid metabolic detoxification. Resistance to the very-long-chain fatty acid-inhibiting herbicide, S-metolachlor, in multiple herbicide-resistant populations (CHR and SIR) of waterhemp (Amaranthus tuberculatus) is conferred by rapid metabolism compared with sensitive populations. However, enzymatic pathways for S-metolachlor metabolism in waterhemp are unknown. Enzyme assays using S-metolachlor were developed to determine the specific activities of glutathione S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) from CHR and SIR seedlings to compare with tolerant corn and sensitive waterhemp (WUS). GST activities were greater (∼2-fold) in CHR and SIR compared to WUS but much less than corn. In contrast, P450s in microsomal extracts from CHR and SIR formed O-demethylated S-metolachlor, and their NADPH-dependent specific activities were greater (>20-fold) than corn or WUS. Metabolite profiles of S-metolachlor generated via untargeted and targeted liquid chromatography-mass spectrometry from CHR and SIR differed from WUS, with greater relative abundances of O-demethylated S-metolachlor and O-demethylated S-metolachlor-glutathione conjugates formed by CHR and SIR. In summary, our results demonstrate that S-metolachlor metabolism in resistant waterhemp involves Phase I and Phase II metabolic activities acting in concert, but the initial O-demethylation reaction confers resistance.


Assuntos
Acetamidas/farmacologia , Amaranthus/metabolismo , Resistência a Herbicidas , Herbicidas/farmacologia , Zea mays/metabolismo , Amaranthus/efeitos dos fármacos , Redes e Vias Metabólicas , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/metabolismo , Zea mays/efeitos dos fármacos
20.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199536

RESUMO

Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.


Assuntos
Amaranthus/crescimento & desenvolvimento , Metais Pesados/análise , Poluentes do Solo/análise , Amaranthus/metabolismo , Biodegradação Ambiental , Biomassa , Ácido Edético/química , Egito , Substâncias Húmicas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...